A NEW, HIGHLY EFFICIENT METHOD FOR THE SEPARATION & QUANTIFICATION OF PLASTIC PARTICLES IN SEDIMENTS OF AQUATIC ECOSYSTEMS

H. K. Imhof1*, J. Schmid2*, R. Niessner2, N. P. Ivleva2 and C. Laforsch1

1Department of Animal Ecology I, University of Bayreuth
2Institute of Hydrochemistry (IWC), Chair for Analytical Chemistry, Technische Universität München (TUM)

Introduction
Although plastic debris is constantly accumulating in aquatic environments, the impact on aquatic ecosystems is not yet fully understood. A first important step in order to assess the consequences of plastic debris in aquatic ecosystems is the establishment of a reliable, verified and standardized method to quantify the amount of plastic particles of ecologically relevant size classes.

Aims:
- Improvement of density separation methods regarding small microplastic particles (S-MPP, <1 mm)
- Successful separation and identification of mesoplatic particles (20 - 500 µm), large microplastic particles (L-MPP, 5 - 1 mm) and small microplastic particles (S-MPP, < 1 mm) down to 1 µm with respect to possible density alterations due to biodegrading and fouling.

Separated - Workflow

1. Sediment Samples
2. Particle Separation
 - Separation liquid in the MPSS (ZnCl₂, 1.6 - 1.7 kg/l)
 - Introduction of Sediment-sample
 - Mounting of dividing chamber
 - Introduction of fresh separation fluid
 - Plastic particles are carried with the rising fluid
3. Filtration
 - Attachment of filter holder with appropriate filter
 - Close Ball Valve
 - Detachment of Dividing chamber
 - Switch to Filter Mode
 - Vacuum filtration on a quartzfilter paper (0.3 µm)
4. Identification with Raman Microspectroscopy
 - Chemical oxidation of organic compounds (e.g. hydrogen peroxide in combination with sulfuric acid) on the filter.

Experimental Design & Results
Clean sediment samples, inoculated with plastic particles, separation with ZnCl₂

Recovery rates for Classical Density Separation (recent studies1,2)
A L-MPP (5 - 1 mm, numbers, N=3)
B S-MPP (1 mm - 1 µm, weight, N=3)

Recovery rates for the new Munich Plastic Sediment Separator - MPSS
A L-MPP (5 - 1 mm, numbers, N=3)
B S-MPP (1 mm - 1 µm, weight, N=3)

Summary
- Effective density separation of particles down to the µm range is achieved using the new MPSS with a ZnCl₂-solution (density 1.6 - 1.7 kg/l)
- For the first time: Verification with recovery rates for S-MPP & L-MPP including PVC & POM with highest specific density
- Reliable and rapid identification of different plastic particles and other micron sized particles

References

Acknowledgments
Financial support for H. Imhof by the Studienstiftung des deutschen Volkes and for J. Schmid by the Hanns-Seidel-Stiftung (BMBF funding) is gratefully acknowledged.

We thank M. Kredler, S. Nagelmüller and M. Böhm for ideas and help during the experiments and the mechanical workshops of TUM, IWC & LMU for technical support and construction.

Contact: Christian.Laforsch@uni-bayreuth.de; +49(0)921552650

Imhof@uni-bayreuth.de; +49(0)892180-74210
95440 Bayreuth, Germany

*These authors contributed equally to this work.

Endnotes
1 The authors contributed equally to this work.
2 Department of Animal Ecology I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
3 Institute of Hydrochemistry (IWC), Chair for Analytical Chemistry, Technische Universität München (TUM), Macherey-Nagel GmbH, 48767 Marl, Germany.

Author(s) 2022